Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sustainability ; 15(7):6123, 2023.
Article in English | ProQuest Central | ID: covidwho-2298747

ABSTRACT

In this paper, we present a framework for evaluating risk contagion by merging financial networks with machine learning techniques. The framework begins with building a financial network model based on the inter-institutional correlation network, followed by analyzing the structure and overall value changes of the financial network under the stress of a liquidation shock. We then examine the network's evolution over time. We also use three machine learning techniques to assess the abnormal volatility of important financial institutions in the financial network. Finally, we evaluate the spillover effects of risk volatility in financial networks on ESG investments. The findings suggest that the financial network becomes more robust as the connections among financial institutions become more intricate. This leads to an improvement in the ability of the financial network to withstand systemic risk events. Overall, our study provides evidence of the negative impact of risk spillovers in financial networks on ESG investments, highlighting the need for a more sustainable and resilient financial system. This innovative framework combining financial network modeling and machine learning prediction provides a deeper understanding of the evolution of financial networks and a more accurate evaluation of abnormal volatility in financial networks.

2.
One Health Advances ; 1(1), 2023.
Article in English | EuropePMC | ID: covidwho-2272616

ABSTRACT

Continuously emergence of human infection with avian influenza A virus poses persistent threat to public health, as illustrated in zoonotic H5N1/6 and H7N9 infections. The recent surge of infection to farmed mink by multiple subtypes of avian influenza A viruses in China highlights the role of mink in the ecology of influenza in this region. Serologic studies suggested that farmed mink in China are frequently infected with prevailing human (H3N2 and H1N1/pdm) and avian (H7N9, H5N6, and H9N2) influenza A viruses. Moreover, genetic analysis from the sequences of influenza viruses from mink showed that several strains acquired mammalian adaptive mutations compared to their avian counterparts. The transmission of SARS-CoV-2 from mink to human alerts us that mink may serve as an intermediate host or reservoir of some emerging pathogens. Considering the high susceptibility to different influenza A viruses, it is possible that mink in endemic regions may play a role as an "mixing vessel” for generating novel pandemic strain. Thus, enhanced surveillance of influenza viruses in mink should be urgently implemented for early warning of potential pandemic.

3.
Nature ; 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2269386

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

4.
Psychol Med ; : 1-12, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1991457

ABSTRACT

BACKGROUND: Persistent psychological distress associated with the coronavirus disease 2019 (COVID-19) pandemic has been well documented. This study aimed to identify pre-COVID brain functional connectome that predicts pandemic-related distress symptoms among young adults. METHODS: Baseline neuroimaging studies and assessment of general distress using the Depression, Anxiety and Stress Scale were performed with 100 healthy individuals prior to wide recognition of the health risks associated with the emergence of COVID-19. They were recontacted for the Impact of Event Scale-Revised and the Posttraumatic Stress Disorder Checklist in the period of community-level outbreaks, and for follow-up distress evaluation again 1 year later. We employed the network-based statistic approach to identify connectome that predicted the increase of distress based on 136-region-parcellation with assigned network membership. Predictive performance of connectome features and causal relations were examined by cross-validation and mediation analyses. RESULTS: The connectome features that predicted emergence of distress after COVID contained 70 neural connections. Most within-network connections were located in the default mode network (DMN), and affective network-DMN and dorsal attention network-DMN links largely constituted between-network pairs. The hippocampus emerged as the most critical hub region. Predictive models of the connectome remained robust in cross-validation. Mediation analyses demonstrated that COVID-related posttraumatic stress partially explained the correlation of connectome to the development of general distress. CONCLUSIONS: Brain functional connectome may fingerprint individuals with vulnerability to psychological distress associated with the COVID pandemic. Individuals with brain neuromarkers may benefit from the corresponding interventions to reduce the risk or severity of distress related to fear of COVID-related challenges.

5.
Journal of Geodesy and Geoinformation Science ; 5(2):1-6, 2022.
Article in English | ProQuest Central | ID: covidwho-1964616

ABSTRACT

Humanities and Social Sciences (HSS) are undergoing the transformation of spatialization and quantification. Geo-computation, with geoinformatics (including RS: Remote Sensing;GIS: Geographical Information System;GNSS: Global Navigation Satellite System), provides effective computational and spatialization methods and tools for HSS. Spatial Humanities and Geo-computation for Social Sciences (SH&GSS) is a field coupling geo-computation, and geoinformatics, with HSS. This special issue accepted a set of contributions highlighting recent advances in methodologies and applications of SH&GSS, which are related to sentiment spatial analysis from social media data, emotional change spatial analysis from news data, spatial analysis of social media related to COVID-19, crime spatiotemporal analysis, “double evaluation” for Land Use/Land Cover (LUCC), Specially Protected Natural Areas (SPNA) analysis, editing behavior analysis of Volunteered Geographic Information (VGI), electricity consumption anomaly detection, First and Last Mile Problem (FLMP) of public transport, and spatial interaction network analysis for crude oil trade network. Based on these related researches, we aim to present an overview of SH&GSS, and propose some future research directions for SH&HSS.

6.
Sustain Cities Soc ; 76: 103485, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1492614

ABSTRACT

The lack of detailed COVID-19 cases at a fine spatial resolution restricts the investigation of spatial disparities of its attack rate. Here, we collected nearly one thousand self-reported cases from a social media platform during the early stage of COVID-19 epidemic in Wuhan, China. We used kernel density estimation (KDE) to explore spatial disparities of epidemic intensity and adopted geographically weighted regression (GWR) model to quantify influences of population dynamics, transportation, and social interactions on COVID-19 epidemic. Results show that self-reported COVID-19 cases concentrated in commercial centers and populous residential areas. Blocks with higher population density, higher aging rate, more metro stations, more main roads, and more commercial point-of-interests (POIs) have a higher density of COVID-19 cases. These five explanatory variables explain 76% variance of self-reported cases using an OLS model. Commercial POIs have the strongest influence, which increase COVID-19 cases by 28% with one standard deviation increase. The GWR model performs better than OLS model with the adjusted R 2 of 0.96. Spatial heterogeneities of coefficients in the GWR model show that influencing factors play different roles in diverse communities. We further discussed potential implications for the healthy city and urban planning for the sustainable development of cities.

SELECTION OF CITATIONS
SEARCH DETAIL